Positive-Bias Temperature Instability (PBTI) of GaN MOSFETs

Alex Guo and Jesús A. del Alamo

Microsystems Technology Laboratories (MTL) Massachusetts Institute of Technology (MIT) Cambridge, MA, USA

Sponsor: United States National Defense Science & Engineering Graduate Fellowship (NDSEG)

To understand the physics of and to mitigate PBTI in GaN n-MOSFETs.

Outline

- **1. Introduction**
- 2. Experimental setup
- **3. PBTI results**
- 4. Discussion and modeling
- **5. Conclusions**

1. Introduction

- GaN promising for power electronics
- Positive-Bias Temperature Instability (PBTI) is a concern:
 - Operational instability
 - Long-term reliability issue
- Challenge: mechanisms responsible for PBTI?

Favored structure: GaN MIS-HEMT

- MIS-HEMT: Metal-Insulator-Semiconductor High Electron Mobility Transistor
- Why GaN MIS-HEMT: Large gate swing, low gate leakage

- Many layers and interfaces complicate PBTI picture
- Many possible sites for trapping

2. Experimental setup

• Simpler GaN MOSFET structure

- One interface: oxide/GaN interface
- Studied devices with two different gate dielectrics with same EOT:
 - SiO₂
 - SiO₂/Al₂O₃ composite

PBTI experiment flow

3. PBTI results Voltage dependence of ΔV_T and ΔS at RT

- $t_{stress} \uparrow \rightarrow \Delta V_T \uparrow$
- $V_{GS_stress} \uparrow \rightarrow \Delta V_{T} \uparrow$
- Minimal ΔS for 5 and 10 V stress, clear increase for 15 V stress
- After 15 V stress, partial V_T recovery, no S recovery

Temperature dependence of $\Delta \textbf{V}_{\textbf{T}}$ and $\Delta \textbf{S}$

Stress conditions:

• V_{GS_Stress} = 15 V, T = -40°C, RT, 75°C, t_{stress}= 10 – 10,000 sec

- $T \uparrow \rightarrow \Delta V_{T} \uparrow$
- $T \uparrow \rightarrow \Delta S \uparrow$
- Partial V_T recovery, no S recovery

Stress time and voltage evolution of $\Delta g_{m,max}$

• Different set of experiments, same stress conditions, RT

- $V_{GS \text{ stress}} \uparrow \rightarrow |\Delta g_{m,max}| \uparrow$
- g_m completely recovers after thermal detrapping

SiO₂ devices summary

- Positive \(\Delta V_T\) increases with stress voltage, time and temperature
- △V_T recoverable under benign stress (V_{GS_stress} ≤ 10 V, T ≤ RT)
- ΔV_T partially recoverable under harsh stress
- Δ S non-recoverable under harsh stress

SiO_2/AI_2O_3 vs. SiO_2 devices: ΔV_T

• ΔV_T at t_{recovery} = 1s, T = -40°C, RT, 75°C, t_{Stress} = 10 - 10,000 sec

SiO_2/AI_2O_3 vs. SiO_2 devices: ΔS

• ΔS at t_{recovery} = 1s, RT

SiO_2/AI_2O_3 vs. SiO_2 devices: $\Delta g_{m,max}$

• $\Delta g_{m,max}$ after stress during ramp down, RT

SiO₂ devices vs. SiO₂/Al₂O₃ devices Summary

Similarities:

- Positive ΔV_T increases with stress voltage, time and temperature
- ΔV_T recoverable under benign stress
- ΔV_T partially recoverable under harsh stress

Differences:

- SiO₂/Al₂O₃ devices show larger ΔV_T at T \leq RT
- SiO_2/AI_2O_3 devices show weaker T dependence
- Both show non-recoverable ΔV_T under harsh stress, but
 - SiO₂ \rightarrow shows non-recoverable Δ S
 - SiO₂/Al₂O₃ \rightarrow shows non-recoverable $\Delta g_{m,max}$

4. Discussion and modeling Mechanisms behind ΔV_T

For both dielectrics:

• Recoverable $\Delta V_{T_{rec}}$ + Non-recoverable $\Delta V_{T_{perm}}$

Recoverable ΔV_T under benign stress

- $V_{GS_stress} \le 10 \text{ V}, \text{ T} \le \text{RT}$
- Power law dependence with stress time
- Also observed in other MOS systems

Consistent with <u>electron trapping in pre-existing oxide traps</u>

Oxide trapping model

Non-recoverable ΔV_T under harsher stress SiO₂ devices

• V_{GS_stress} = 15 V

 Non-recoverable ∆V_T correlates with non-recoverable ∆S → generation of interface states

Non-recoverable ΔV_T under harsher stress SiO₂/Al₂O₃devices

- Non-recoverable ∆V_T correlates with non-recoverable ∆g_{m,max} → generation of oxide traps near Al₂O₃/GaN interface
- Also observed in Al₂O₃/InGaAs MOSFETs (S. Deora, IRPS 2014)

5. Conclusions

- Under benign stress (V_{GS_stress} ≤ 10 V, T ≤ RT):
 - ΔV_T due to electron trapping in pre-existing oxide traps
 - ΔV_T mostly recoverable
- Under harsher stress (V_{GS_stress} = 15 V), additional nonrecoverable ΔV_T:
 - $SiO_2 \rightarrow$ generation of interface states
 - SiO₂/Al₂O₃ → generation of oxide traps near oxide/GaN interface
- Oxide trapping model shows excellent agreement with experimental data at all T

Questions?

Thank you