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Purpose
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To understand the physics of and to 
mitigate PBTI in GaN n-MOSFETs.
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• GaN promising for power electronics
• Positive-Bias Temperature Instability (PBTI) is a 

concern:
• Operational instability
• Long-term reliability issue

• Challenge: mechanisms responsible for PBTI?

1. Introduction
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Favored structure: GaN MIS-HEMT

P. Lagger, TED 2014

• Many layers and interfaces complicate PBTI picture
• Many possible sites for trapping

• MIS-HEMT: Metal-Insulator-Semiconductor High Electron 
Mobility Transistor 

• Why GaN MIS-HEMT: Large gate swing, low gate leakage
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2. Experimental setup
• Simpler GaN MOSFET structure

• One interface: oxide/GaN interface 
• Studied devices with two different gate dielectrics 

with same EOT: 
• SiO2
• SiO2/Al2O3 composite

metal

oxide
GaN channel



Device screening and 
initialization

PBTI experiment flow

I/V sweep during 
recovery

Repeat 75 times

Stress

• VT :  VGS value when ID = 1 µA/mm
• S : Extracted at ID = 0.1 µA/mm
• gm_max: Extracted on ramp down
• All at VDS = 0.1 V

• First sample: ~ 1-2 s after removal 
of stress
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Thermal detrapping

I/V sweep (confirm 
device restoration)

Increase stress voltage 
or temperature

V

0

Ramp down

Ramp down
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• tstress ↑  ΔVT ↑ 
• VGS_stress ↑  ΔVT ↑ 
• Minimal ΔS for 5 and 10 V stress, clear increase for 15 V stress
• After 15 V stress, partial VT recovery, no S recovery

• ΔVT , ΔS at trecovery = 1 s

E field ~ 1, 2, 3 MV/cm

3. PBTI results
Voltage dependence of ∆VT and ∆S at RT

SiO2
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Temperature dependence of ∆VT and ∆S
Stress conditions: 
• VGS_Stress = 15 V, T = -40°C, RT, 75°C, tstress= 10 – 10,000 sec

• T ↑  ΔVT ↑
• T ↑  ΔS ↑ 
• Partial VT recovery, no S recovery

SiO2
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Stress time and voltage evolution of ∆gm,max
• Different set of experiments, same stress conditions, RT

• tstress ↑  |∆gm,max| ↑ 
• VGS_stress ↑  |∆gm,max| ↑ 
• gm completely recovers after thermal detrapping

SiO2



• Positive ∆VT increases with stress voltage, time 
and temperature

• ∆VT recoverable under benign stress (VGS_stress ≤ 10 
V, T ≤ RT )

• ∆VT partially recoverable under harsh stress
• ∆S non-recoverable under harsh stress
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SiO2 devices summary



SiO2/Al2O3 vs. SiO2 devices: ΔVT
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SiO2/Al2O3 vs. SiO2: 
• Weaker T dependence
• Larger ΔVT for T ≤ RT

• ΔVT at trecovery = 1s, T = -40°C, RT, 75°C, tStress= 10 – 10,000 sec
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SiO2/Al2O3 vs. SiO2: 
• Minimal ΔS for all stress 

voltages and T’s

• ΔS at trecovery = 1s, RT

SiO2/Al2O3 vs. SiO2 devices: ΔS
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SiO2/Al2O3 vs. SiO2: 
• Partial recovery of gm

• ∆gm,max after stress during ramp down, RT

SiO2/Al2O3 vs. SiO2 devices: Δgm,max



SiO2 devices vs. SiO2/Al2O3 devices
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Summary

Similarities:
• Positive ∆VT increases with stress voltage, time and 

temperature
• ∆VT recoverable under benign stress
• ∆VT partially recoverable under harsh stress

Differences:
• SiO2/Al2O3 devices show larger ∆VT at T ≤ RT
• SiO2/Al2O3 devices show weaker T dependence
• Both show non-recoverable ∆VT under harsh stress, but 

• SiO2  shows non-recoverable ∆S
• SiO2/Al2O3 shows non-recoverable ∆gm,max



For both dielectrics:
• Recoverable ∆VT_rec + Non-recoverable ∆VT_perm

Mechanisms behind ∆VT
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SiO2 SiO2/Al2O3

∆𝑽𝑽𝑻𝑻_rec

∆𝑽𝑽𝑻𝑻_rec

∆𝑽𝑽𝑻𝑻_perm
∆𝑽𝑽𝑻𝑻_perm

4. Discussion and modeling

VGS_stress = 15 V at RT
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• VGS_stress ≤ 10 V, T ≤ RT 
• Power law dependence with stress time
• Also observed in other MOS systems 

Recoverable ∆VT under benign stress   

Si InGaAs

S. Zafar, TDMR 2005 S. Deora, et al., IPRS 2014

• Consistent with electron trapping in pre-existing oxide traps

0
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Oxide trapping model

SiO2: 𝜷𝜷 = 0.25 ; 𝝉𝝉𝟎𝟎= 150 s
SiO2/Al2O3: 𝜷𝜷 = 0.22-0.25 ; 𝝉𝝉𝟎𝟎 = 200 s

Channel Oxide 𝜷𝜷

Si Al2O3 0.32

InGaAs Al2O3, 
ZrO2/Al2O3

0.26-
0.29

GaN SiO2 , 
SiO2/Al2O3

0.22-
0.25

∆𝑽𝑽𝑻𝑻_ox = ∆𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 � 𝟏𝟏 − 𝐞𝐞𝐞𝐞𝐞𝐞(− 𝒕𝒕
𝝉𝝉𝟎𝟎

𝜷𝜷
)

• t: stress time
• ∆𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 is function of trap density 

and trapped charge centroid
• 𝜷𝜷 describes trap distribution
• 𝝉𝝉𝟎𝟎 is time constant of traps

This work

S. Zafar, TDMR 2005

SiO2 SiO2/Al2O3
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• VGS_stress = 15 V 

Interface 
charges

Non-recoverable ∆VT under harsher stress
SiO2 devices   

• Non-recoverable ∆VT correlates with non-recoverable ∆S 
generation of interface states
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• VGS_stress = 15 V, RT 

Oxide 
charges

Non-recoverable ∆VT under harsher stress
SiO2/Al2O3devices   

• Non-recoverable ∆VT correlates with non-recoverable ∆gm,max
generation of oxide traps near Al2O3/GaN interface

• Also observed in Al2O3/InGaAs MOSFETs (S. Deora, IRPS 2014)
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5. Conclusions

• Under benign stress (VGS_stress ≤ 10 V, T ≤ RT):
• ΔVT due to electron trapping in pre-existing oxide traps
• ΔVT mostly recoverable

• Under harsher stress (VGS_stress = 15 V), additional non-
recoverable ΔVT: 
• SiO2  generation of interface states
• SiO2/Al2O3 generation of oxide traps near oxide/GaN

interface

• Oxide trapping model shows excellent agreement with 
experimental data at all T
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Questions?



23

Thank you
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